

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2407-2409

Nor-dehydrodeguelin and nor-dehydrorotenone, C₂₂ coumaronochromones from Lonchocarpus nicou

Martin A. Lawson^a, Mourad Kaouadji^{b,*}, Albert J. Chulia^a

^a Laboratoire de Pharmacognosie, UPRES EA 4021 'Biomolécules et Thérapies Antitumorales' Faculté de Pharmacie, 2, Rue Docteur Marcland, F-87025 Limoges Cedex, France

^b Département de Chimie, Faculté des Sciences et Techniques 123, Avenue A. Thomas F-87060 Limoges Cedex, France

Received 5 December 2007; revised 8 February 2008; accepted 12 February 2008 Available online 14 February 2008

Abstract

Lonchocarpus nicou roots lipophile extract yielded, among isoflavonoids, two coumaronochromones isomers. Spectroscopic analysis assigned the structure of nor-dehydrodeguelin to the former and (-)-nor-dehydrorotenone to the latter, the two products only differing by the cyclization of the C_5 side chain. Biogenetically, the two compounds could be considered as resulting either from cyclization of the corresponding 2'-hydroxyisoflavones and/or from oxidative ring-B contraction of the dehydrorotenoids parents. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Fabaceae; Millettieae; Lonchocarpus nicou; Coumaronochromones; nor-Dehydrodeguelin; nor-Dehydrorotenone

The chemical investigation of nonpolar metabolites from Lonchocarpus nicou roots, a tropical liana of the Fabaceae family,¹⁻³ afforded a series of thirty prenylated isoflavonoids mainly based upon rotenone and deguelin structures.⁴ All the phytochemicals were identified to rotenoids, dehydrorotenoids, as well as products resulting from either a ring-B extension (13-homo-13-oxadehydrorotenoids) or a ring-C cleavage (seco-rotenoids).⁵ Further multistep chromatographic treatment of the lipophile extract^{4,5} yielded two extra isomers 1 (4 mg) and 2 (5 mg) closely related to the known dehydrodeguelin (3) and (-)-dehydrorotenone (4). The structure of the newly reported compounds in the plant kingdom was established as coumaronochromones by spectroscopic evidence including UV, MS as well as NMR.

Compound 1 was isolated as a white amorphous powder, $[\alpha]_D^{2\hat{1}} \pm 0$ (*c* 0.003, CHCl₃). It exhibited a UV spectrum with bands at λ_{max} (MeOH): 251, 293 and 330 nm, respectively. The molecular formula $C_{22}H_{18}O_6$ was deduced from HREIMS (found: 378.1093; calcd: 378.1103). The 14 double-bond equivalents from the molecular formula matched the recorded ¹³C NMR data (Table 1) for 17 sp² C atoms (174 ppm $> \delta > 95$ ppm) along with five aliphatic carbons (78 ppm $> \delta > 28$ ppm). Eight degrees of insaturation corresponded to two tetrasubstituted aromatic rings as shown by the four ¹H NMR signals in the shift range 8.2– 6.9 ppm. One ring was 1,2,3,4-tetrasubstituted (AM system at δ 8.15 ppm and δ 6.94 ppm and ortho-coupling of 8.7 Hz); the other ring was 1,2,4,5-tetrasubstituted consequently to two singlets integrating for one proton each at δ 7.65 and 7.11 ppm. The further three degrees of insaturation were consistent with one highfield keto group (δ 173.7 ppm) and one 1,2-disubstituted double bond revealed by two doublets at δ 6.93 ppm and 5.80 ppm for two ciscoupled protons (J = 10.0 Hz). In the ¹H NMR spectrum, the broadening of only both doublets at δ 5.80 ppm (ethylenic H) and δ 6.94 ppm (aromatic H) was suitable for long range coupling $(J \le 1 \text{ Hz})$ between the two nuclei. Thus, the above-mentioned ethylenic bond must be firstly located on the 1,2,3,4-tetrasubstituted aromatic ring at the meta position (C-8) with respect to H-6 (δ 6.94 ppm) and secondly included in a condensed supplementary ring, to agree with the *anti* relationship between the two nuclei.⁶ Finally,

Corresponding author. Tel.: +33 5 55 43 58 34; fax: +33 5 55 43 59 10. E-mail address: mourad.kaouadji@unilim.fr (M. Kaouadji).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.063

Table 1	
1 H (400 MHz) and 13 C (100 MHz) NMR data for coumaronochromones 1 and 2 in CL	$OCl_3 (\delta \text{ ppm}; J \text{ Hz})$

1				2			
H/C	¹³ C	$^{1}\mathrm{H}$	HMBC	H/C	¹³ C	$^{1}\mathrm{H}$	HMBC
2	164.1			2	164.1		
3	99.5			3	99.5		
4	173.7			4	173.8		
5	126.5	8.15 d (8.7)	C-4, C-7, C-9	5	128.0	8.24 d (8.6)	C-4, C-7, C-9
6	115.1	6.94 br d (8.7)	C-8, C-9, C-10	6	108.3	6.98 d (8.6)	C-8, C-9, C-10
7	157.2			7	164.8		
8	109.7			8	113.8		
9	149.3			9	150.5		
10	117.5			10	118.0		
1′	115.1			1'	115.1		
2'	143.5			2'	143.5		
3′	95.8	7.11 s	C-1', C-5'	3'	95.8	7.11 s	C-1', C-5'
4′	148.0^{a}			4′	148.0 ^a		
5'	147.9 ^a			5′	147.9 ^a		
6'	103.6	7.65 s	C-3, C-2', C-3', C-4'	6'	103.6	7.66 s	C-3, C-2', C-3', C-4'
2"	77.8			2″	87.9	5.45 br t (8.9)	C-7", C-8"
3″	131.2	5.80 d (10.0)	C-8	3″	31.7	3.65 dd (15.9; 9.8)	C-7, C-9, C-6"
						3.31 dd (15.9; 7.9)	C-7, C-9, C-6"
4″	114.8	6.93 br d (10.0)	C-2"	6″	142.8		
7″	28.2	1.52 s	C-3″	7″	113.1	5.16 br s	C-2", C-8"
						5.00 br s	C-2", C-8"
8″	28.2	1.52 s	C-3″	8″	17.1	1.83 br s	C-2", C-7"
OCH ₃	56.6	4.00 s	C-4' or C-5'	OCH ₃	56.6	4.00 s	C-4' or C-5'
	56.5	3.96 s	C-4' or C-5'		56.5	3.96 s	C-4' or C-5'

^a Values with the same superscript in one column may be interchanged.

the remaining three unprotonated insaturations, the two further heterocycles and one π -bond were deduced as follows. In the 1,2,3,4-tetrasubstituted aromatic ring, deshielding of H-5 (δ 8.15 ppm) was due to electron-withdrawing substituent consistent in an ortho-CO group (C-4: δ 173.7 ppm); inversely, the proton at δ 6.94 ppm (H-6) was shielded by two conjugated electron-donating OR substituents. The substitution pattern of this benzene ring was corroborated by HMBC cross-peaks analysis, which furthermore pointed out O- and C-substituents. The proton at δ 8.15 ppm (H-5) exhibited three large connectivities induced by ${}^{3}J$ couplings with quaternary O-bonded carbons: C-4 (δ 173.7 ppm), C-7 (δ 157.2 ppm) and C-9 (δ 149.3 ppm). On the same ring, the proton at δ 6.94 ppm (H-6) showed two cross-peaks with quaternary C-linked carbons: C-8 (δ 109.7 ppm) and C-10 (δ 117.5 ppm) due to ${}^{3}J$ couplings and a connectivity involved by ${}^{4}J$ coupling with the above-mentioned oxy C-9. All these findings evidenced a 2,4-di-O- and 3-C-substituted benzoyl moiety condensed with the reported 1,2-disubstituted π -bond belonging to a cyclized C₅H₈ chain. Identified with a gem-dimethylpyran, it was characterized in the ¹³C NMR by the signals highlighting 2 equiv methyls (δ 28.2 ppm), two methines (C-3": δ 131.2 ppm and C-4": δ 114.8 ppm) and a lowfield quaternary sp³ C (C-2": δ 77.8 ppm). Thus, ring closure of the heterocycle would occur at either the ortho or the para position with respect to the keto group. Although neither C-7 (& 157.2 ppm) nor C-9 (& 149.3 ppm) displayed any connectivity with H-4" (δ 6.93 ppm)

in the HMBC spectrum, cyclization would occur at C-7 to support the above-mentioned *anti* periplanar H-6 and H-4". Furthermore, the combination of the shielded 4-keto group (δ 173.7 ppm) and the *ortho*-oxygen with two quaternary sp² carbons (C-2: δ 164.1 ppm and C-3: δ 99.5 ppm) is suitable for an O-bonded C-atom β -conjugated to the carbonyl for the former and for a C-linked carbon β -conjugated to an oxygen for the latter. Hence, the partial structure C₁₄H₁₀O₃ issued from the above results was a 2,3-disubstituted 2',2'-dimethylpyrano(5',6':8,7)chromone.

Finally, the remaining $C_8H_8O_3$ moiety, linked twice with the 2,3-disubstituted chromone, corresponded to five double bond equivalents. It was constituted by the next 1,2,4,5-tetrasubstituted benzene bearing three oxygen atoms as shown by the downfield quaternary C signals (C-2': δ 143.5 ppm, C-4',5': δ 148.0 and 147.9 ppm). Two heteroatoms belonged to methoxy groups (δ 56.6 and 56.5 ppm) in the ortho positions since the third was linked to the chromone part along with the last and highfield ortho guaternary C (C-1': δ 115.1 ppm). This result was fully supported by the HMBC map for the para-oriented H (H-3': δ 7.11 ppm and H-6': δ 7.65 ppm). The 3'-proton exhibited one ${}^{3}J$ cross-peak with C-1' and one more with C-5' close to C-4'. Conversely, H-6' showed one ${}^{4}J$ connectivity with C-3' (δ 95.8 ppm) and two ³J cross-peaks with C-2' (δ 143.5 ppm) and C-3 (δ 99.5 ppm). To conclude, the complete structure for this new C₂₂ isoflavonoid was 4',5'-dimethoxycoumarono-2",2"-dimethylpyrano(5",6":8,7)chromone for which the trivial name nor-dehydrodeguelin was assigned because it was closely related to the C₂₃ rotenoid dehydrodeguelin (3).4,7

With a slightly more polar chromatographic behaviour and $\left[\alpha\right]_{\rm D}^{21}$ -53 (c 0.003, CHCl₃), compound **2** was also isolated as a white amorphous powder. It showed a UV spectrum with bands at λ_{max} (MeOH): 257, 289 and 323 sh nm, respectively. The HREIMS of the molecular ion (found: 378.1093; calcd: 378.1103) evidenced the same molecular formula $C_{22}H_{18}O_6$ as 1. Comparison of the ¹H and ¹³C NMR data for both compounds (Table 1) showed that the major difference between them was only cyclization of the C_5H_8 side chain. The six-membered ring in 1 was replaced by a five-membered ring likely condensed to the chromone moiety in 2. This result was suggested in the ¹H NMR by three sets of signals integrating for one proton each at δ 5.45 ppm (H-2"), δ 3.65 ppm (H-3") and δ 3.31 ppm $(H-3''_{h})$ in agreement with an oxymethine vicinal to an endocyclic methylene with two nonequivalent protons ($J_{gem} = 15.9$ Hz). The resulting C₂ chain belonged to a 2-substituted 2,3-dihydrofuran 4,5-condensed with the chromone part. Finally, three broad singlets accounting for one methyl (H-8": δ 1.83 ppm) and one olefinic methylene (H-7["]_a: δ 5.16 ppm; H-7["]_b: δ 5.00 ppm) identified the 2substituent to an isopropenyl side chain. The ¹³C NMR spectrum supported this partial structure grouping two olefinic C (C-6": δ 142.8 ppm and C-7": δ 113.1 ppm) and three aliphatic nuclei (C-2": δ 87.9 ppm, C-3": δ 31.7 ppm and C-8": δ 17.1 ppm). On the basis of the above evidence, the newly reported compound 2 in L. nicou was established to be 4',5'-dimethoxycoumarono-2"-isopropenyl-2",3"dihydrofurano(4",5":8,7)chromone for which the trivial name (-)-nor-dehydrorotenone was proposed because it was related to (-)-dehydrorotenone (4).^{4,7} It was previously reported as a by-product (3% yield) resulting from the photooxidative conversion of (-)-dehydrorotenone into (-)-6-oxodehydrorotenone (25% yield).^{8,9}

The coumaronochromones are generally reported to co-occur with the structurally analogous 2'-hydroxyisoflavones^{10–16} and, although not yet proven, it is likely that the latter group could be the biosynthetic precursor of the former group.^{8,10,17} Indeed, 2'-hydroxyisoflavones may be converted into the corresponding coumaronochromones using a variety of oxidative reagents.^{13,14,16,17} As none of the 2'-hydroxyisoflavones was detected in the *L. nicou* sample, the coumaronochromones within this species might also be issued from the dehydrorotenoids parents by oxidative ring-B contraction.

Acknowledgements

The authors are grateful to *Région Limousin* for supporting a part of this work (Grant No. 2002-1716) as well as to Dr. J.-M. Marbouty (Université de Limoges) for his help in correcting the English language.

References and notes

- Southon, W. I. In *Phytochemical Dictionary of the Leguminosae*; Bisby, F. A., Buckingham, J., Harborne, J. B., Eds.; Plants and their Constituents; Chapman and Hall: London, 1994.
- 2. Moretti, C.; Grenand, P. J. Ethnopharmacol. 1982, 6, 139-160.
- Neuwinger, H. D. African Ethnobotany: Poisons and Drugs; Chapman and Hall: Weinheim, 1996; pp 682–715.
- Lawson, M. A.; Kaouadji, M.; Léger, D.; Liagre, B;. Allais, D.; Beneytout, J.-L.; Chulia, A. J. In: *Polyphenols Communications 2006*, Daayf, F.; El Hadrami, A.; Adam, L.; Balance, G. M.; Eds.; pp 95–96.
- Lawson, M. A.; Kaouadji, M.; Allais, D. P.; Champavier, Y.; Chulia, A. J. *Tetrahedron Lett.* 2006, *47*, 451–454.
- Williams, D. H.; Fleming, I. Spectroscopic Methods in Organic Chemistry; McGraw-Hill Book: Maidenhead, 1973.
- 7. Fang, N.; Casida, J. E. J. Org. Chem. 1997, 62, 350-353.
- Hamada, M.; Chubachi, M. Bull. Inst. Chem. Res. Kyoto Univ. 1972, 50, 168–174.
- Chubachi, M.; Hamada, M.; Kawano, E. Agric. Biol. Chem. 1983, 47, 619–621.
- Falshaw, C. P.; Ollis, W. D. Agric. Chem. Commun. 1966, 10, 305– 306.
- Falshaw, C. P.; Ollis, W. D.; Moore, J. A.; Magnus, K. *Tetrahedron* 1966, 7, 333–348.
- Subbaraju, K. V.; Srimannarayana, G.; Ternai, B.; Stanley, R.; Markham, K. R. *Tetrahedron* 1981, 37, 957–962.
- Tahara, S.; Ingham, J. L.; Mizutani, J. Agric. Biol. Chem. 1985, 49, 1775–1783.
- Tahara, S.; Orihara, S.; Ingham, J. L. Phytochemistry 1989, 28, 901– 911.
- Tahara, S.; Moriyama, M.; Ingham, J. L.; Mizutani, J. Phytochemistry 1993, 34, 303–315.
- Lane, G. A.; Newman, R. H. Phytochemistry 1986, 26, 295– 300.
- Dewick, P. M. In *Flavonoids: Advances in Research Since 1986*; Harborne, J. B., Ed.; Isoflavonoids; Chapman and Hall: London, 1994; p 117.